Soal - Soal Persamaan Eksponen

SOAL - SOAL PERSAMAAN EKSPONEN 


Contoh 1 
Tentukan penyelesaian dari 22x-7 = 81-x   

a. 1 

b. 2  

c. - 2 

d. - 1

Jawab :
Langkah pertama, samakan basis pada kedua ruas.
22x-7 = 81-x
22x-7 = (23)1-x
22x-7 = 23-3x

Karena basisnya sama, berdasarkan sifat A diperoleh
2x - 7 = 3 - 3x
5x = 10
x = 2

Jadi, penyelesaiannya adalah x = 2 (b)

Contoh 2 
Tentukan penyelesaian dari 32x-2 = 5x-1 

a. - 1 

b. 2  

c. - 2 

d. 1

Jawab :

Kedua basis pada persamaan diatas berbeda dan tidak ada sifat-sifat perpangkatan yang dapat kita gunakan untuk menyamakan kedua basis tersebut. Namun, kedua pangkatnya bisa kita samakan menjadi sebagai berikut :
32x-2 = 5x-1
32(x-1) = 5x-1
9x-1 = 5x-1

Berdasarkan sifat B, maka
x - 1 = 0
x = 1

Jadi, penyelesaiannya adalah x = 1 (d) 

 Contoh 4 
Tentukan HP dari (2x + 3)x-1 = 1 

a. {-1,1} 

b. {1,-1}  

c. {1,1} 

d. {-1,-1}

Jawab :
Misalkan : f(x) = 2x + 3  dan  g(x) = x - 1

Solusi 1 : f(x) = 1
2x + 3 = 1
2x = -2
x = -1  

Solusi 2 : f(x) = -1, dengan syarat g(x) genap
2x + 3 = -1
2x = -4
x = -2  
Periksa :
Untuk x = -2  →  g(x) = -2 - 1 = -3  (ganjil)
Karena g(x) ganjil, maka x = -2 tidak memenuhi.

Solusi 3 : g(x) = 0, dengan syarat f(x) ≠ 0
x - 1 = 0
x = 1  
Periksa :
Untuk x = 1  →  f(x) = 2(1) + 3 = 5 ≠ 0.
Karena f(x) ≠ 0, maka x = 1 memenuhi.

HP = {-1, 1} (a)


 Contoh 5 
Tentukan HP dari (2x + 1)x-6 = (x + 5)x-6  

a. {2,4,6} 

b. {-2,-4,-6} 

c. {-2,4,6} 

d. {2,-4,-6}

Jawab :
Misalkan : f(x) = 2x + 1,  g(x) = x + 5  dan  h(x) = x - 6

Solusi 1 : f(x) = g(x)
2x + 1 = x + 5
x = 4  

Solusi 2 : f(x) = -g(x),  dengan syarat h(x) genap
2x + 1 = -(x + 5)
2x + 1 = -x - 5
3x = -6
x = -2  
Periksa :
Untuk x = -2  →  h(x) = -2 - 6 = -8 (genap)
Karena h(x) genap, maka x = -2 memenuhi.

Solusi 3 : h(x) = 0,  dengan syarat f(x) ≠ 0 dan g(x) ≠ 0
x - 6 = 0
x = 6  
Periksa : Untuk x = 6 maka
f(x) = 2(6) + 1 = 13 ≠ 0
g(x) = 6 + 5 = 11 ≠ 0
Karena keduanya ≠ 0, maka x = 6 memenuhi.

Catatan : Jika seandainya salah satu atau keduanya bernilai nol, maka x = 6 tidak memenuhi.

∴ HP = {-2, 4, 6} (c) 

Contoh 6 
Tentukan HP dari (x - 4)4x = (x - 4)1+3x 

a. {1,3,4,5}  

b. {1,2,3,4} 

c. {-1,-2,-3,-4} 

d. {,-1,-3,-4,-5}


Jawab :
Misalkan : f(x) = x - 4,  g(x) = 4x  dan h(x) = 1 + 3x

Solusi 1 : g(x) = h(x)
4x = 1 + 3x
x = 1  

Solusi 2 : f(x) = 1
x - 4 = 1
x = 5  

Solusi 3 : f(x) = -1,  g(x) dan h(x) keduanya genap/ganjil.
x - 4 = -1
x = 3  
Periksa : Untuk x = 3 maka
g(x) = 4(3) = 12  (genap)
h(x) = 1 + 3(3) = 10  (genap)
Karena keduanya genap, maka x = 3 memenuhi.

Catatan : Jika seandainya keduanya ganjil, maka x = 3 juga memenuhi. Namun, jika salah satu genap dan yang lain ganjil maka x = 3 tidak memenuhi.

Solusi 4 : f(x) = 0,  g(x) dan h(x) keduanya positif.
x - 4 = 0
x = 4  
Periksa : Untuk x = 4 maka
g(x) = 4(4) = 16  (positif)
h(x) = 1 + 3(4) = 13  (positif)
Karena keduanya positif, maka x = 4 memenuhi.

Catatan : Jika seandainya salah satu atau keduanya bernilai ≤ 0, maka x = 4 tidak memenuhi.

∴ HP = {1, 3, 4, 5} (a) 

 Contoh 7 
Tentukan HP dari 22x - 3. 2x+1 + 8 = 0  

a. {-1,2} 

b. {1,2}  

c. {-2,-1} 

d. {-2,1}

Jawab :
22x - 3. 2x+1 + 8 = 0
(2x)2 - 3. 2x . 21 + 8= 0
(2x)2 - 6(2x) + 8 = 0

Misalkan 2x = p, sehingga
p2 - 6p + 8 = 0
(p - 2)(p - 4) = 0
p = 2 atau p = 4

Untuk p = 2
2x = 2
2x = 21
x = 1

Untuk p = 4
2x = 4
2x = 22
x = 2

Jadi, HP = {1, 2} (b)

 Contoh 8 
Jika penyelesaian dari 5t4-1 = 3t4-1 adalah t1 dan t2 dengan t1 > t2, tentukan nilai t2 - t1 !
a. - 2 
b. 1 
c. 2   
d. - 1

Jawab :
Berdasarkan sifat B maka
t4 - 1 = 0
(t2 - 1)(t2 + 1) = 0
(t + 1)(t - 1)(t2 + 1) = 0
t = -1  atau t = 1
Catatan : t2 + 1 = 0 tidak mempunyai penyelesaian real, dapat diuji dari nilai diskriminannya yang kurang dari nol.

Karena t1 > t2 , maka t1 = 1 dan t2 = -1. Akibatnya
t2 - t1 = -1 - 1 = -2  (a)
 
 Contoh 9 
Tentukan HP dari (x2 - x - 1)3x-9 = 1 
a. {1,2,3,4} 
b. {1,2,3}  
c. {-1,1,2,3}  
d. {0,1,2,3}

Jawab :
Berdasarkan sifat D, persamaan eksponen diatas mempunyai 3 kemungkinan solusi.

Solusi 1 : Basisnya sama dengan 1.
x2 - x - 1 = 1
x2 - x - 2 = 0
(x + 1)(x - 2) = 0
x = -1 atau x = 2

Solusi 2 : Basisnya sama dengan -1, dengan syarat pangkatnya genap.
x2 - x - 1 = -1
x2 - x = 0
x(x - 1) = 0
x = 0 atau x = 1
Untuk x = 0  → (3x - 9) bernilai ganjil
Untuk x = 1  → (3x - 9) bernilai genap
Jadi, yang memenuhi adalah x = 1

Solusi 3 : Pangkatnya sama dengan nol, dengan syarat basisnya tidak sama dengan nol.
3x - 9 = 0
3x = 9
x = 3
Periksa : Untuk x = 3  →  (x2 - x - 1) ≠ 0
Jadi, x = 3 memenuhi

∴ HP = {-1, 1, 2, 3} (c)

 Contoh 10 

Tentukan HP dari (x2 + 3x - 2)2x+3 = (x2 + 2x + 4)2x+3
a. {3/2,1/2,6} 
b. {-3/2,-1/2,6} 
c. {-3/2,1/2,6} 
d. {2/2,1/2,6}
Jawab :
Berdasarkan sifat E, persamaan eksponen diatas mempunyai 3 kemungkinan solusi.

Solusi 1 : Basis kiri sama dengan basis kanan.
x2 + 3x - 2 = x2 + 2x + 4
3x - 2 = 2x + 4
x = 6

Solusi 2 : Basis berlainan tanda, dengan syarat pangkatnya genap.
x2 + 3x - 2 = -(x2 + 2x + 4)
x2 + 3x - 2 = -x2 - 2x - 4
2x2 + 5x + 2 = 0
(2x + 1)(x + 2) = 0
x = -1/2 atau x = -2
Periksa :
Untuk x = -1/2  →  (2x + 3) bernilai genap
Untuk x = -2  →  (2x + 3) bernilai ganjil
Jadi, yang memenuhi adalah x = -1/2

Solusi 3 : Pangkatnya sama dengan nol, dengan syarat kedua basisnya tidak sama nol.
2x + 3 = 0
x = -3/2
Periksa : Untuk x = -3/2 maka
(x2 + 3x - 2) ≠ 0
(x2 + 2x + 4) ≠ 0
Karena keduanya ≠ 0, maka x = -3/2 memenuhi.

∴ HP = {-3/2, -1/2, 6} (b) 

Contoh 11
Tentukan HP dari (x2 - 1)x-1 = (x2 - 1)x+1
a. {-2,0,2} 
b. {-2, 0, √2}  
c. {-√1, 0, √2} 
d. {-√2, 0, √2}
Jawab :
Berdasarkan sifat F, persamaan diatas memiliki 4 kemungkinan solusi.

Solusi 1 : Pangkat kiri sama dengan pangkat kanan.
x - 1 = x + 1
Tidak ada nilai x yang memenuhi.

Solusi 2 : Basisnya sama dengan 1.
x2 - 1 = 1
x2 = 2
x = √ 2  atau x = -√ 2

Solusi 3 : Basisnya sama dengan -1, dengan syarat kedua pangkatnya genap atau keduanya ganjil.
x2 - 1 = -1
x2 = 0
x = 0
Periksa : Untuk x = 0 maka
(x - 1) bernilai ganjil
(x + 1) bernilai ganjil
Karena keduanya ganjil, maka x = 0 memenuhi.

Solusi 4 : Basisnya = 0, dengan syarat kedua pangkatnya ≠ 0.
x2 - 1 = 0
(x + 1)(x - 1) = 0
x = -1 atau x = 1
Periksa :
Untuk x = -1 maka (x - 1) ≠ 0 dan (x + 1) = 0
Jadi, x = -1 tidak memenuhi.

Untuk x = 1 maka (x - 1) = 0 dan (x + 1) ≠ 0
Jadi, x = 1 tidak memenuhi.

∴ HP = {-√2, 0, √2} (d) 


 
NAILA ZIA KHALISHAH 
X MIPA 2 
NO. ABSEN 27 

Komentar

Postingan populer dari blog ini

Operasi Vektor dan Contoh Soalnya

Sudut Antar Vektor pada Bidang Berdimensi Dua dan Berdimensi Tiga serta Contoh Soalnya

Pembahasan Soal Vektor Matematika Minat X MIPA