Panjang Vektor dari : 2 Titik Koordinat (Dua atau Tiga Dimensi) Koordinat Titik dan Sudut serta Contoh Soalnya
Vektor adalah suatu besaran. Dalam Fisika, kita mengenal dua jenis besaran, yaitu besaran skalar dan vektor. Bedanya, besaran skalar hanya memiliki nilai saja, sedangkan besaran vektor memiliki nilai dan juga arah. Contoh besaran vektor, antara lain perpindahan, kecepatan, percepatan, gaya, medan listrik, medan magnet, dan masih banyak lagi.
Jarak adalah panjang lintasan yang ditempuh suatu benda yang bergerak.
Perpindahan merupakan perubahan kedudukan/posisi suatu benda.
Secara geometris, suatu vektor dig. ambarkan sebagai ruas garis berarah. Vektor dapat dinotasikan dengan huruf kecil bertanda panah di atasnya (, dst) atau huruf kecil bercetak tebal (a, b, c, dst). Nah, pada gambar di bawah ini, terdapat ruas garis yang kita misalkan sebagai vektor . Vektor merupakan vektor yang memiliki pangkal di titik A dan ujung di titik B. Jika kita tulis vektor dalam bentuk matriks, maka hasilnya akan seperti berikut:
Kalau vektor merupakan besaran yang punya nilai dan arah. Nilai vektor bergantung pada arah tiap-tiap komponennya. Komponen x akan bernilai positif jika arahnya ke kanan dan bernilai negatif jika arahnya ke kiri. Sementara itu, komponen y akan bernilai positif jika arahnya ke atas dan bernilai negatif jika arahnya ke bawah.
Misalkan, terdapat sebuah vektor , sebagai berikut.
Untuk menentukan nilai vektor , kita bisa lihat pergeseran arahnya. Pertama, untuk mencari nilai komponen x, kita lihat apakah vektor bergeser ke arah kiri atau kanan. Ternyata, vektor bergeser sejauh 4 satuan ke kanan, berarti nilai komponen x = 4. Lalu, untuk mencari nilai komponen y, kita lihat pergeseran vektor ke atas atau ke bawah. Kalau kamu lihat, vektor bergeser ke atas sejauh 4 satuan, sehingga nilai komponen y = 4. Jadi, diperoleh nilai vektor , yaitu:
Vektor pada bidang bisa disebut juga sebagai vektor dua dimensi. Pada vektor dua dimensi, kita akan mengenal yang namanya vektor posisi. Apa itu vektor posisi? Vektor Posisi adalah vektor yang berpangkal di pusat koordinat (0,0) dan berujung di suatu titik (x,y).
Nah, kalau kamu perhatikan gambar di bawah, terdapat dua buah ruas garis, yaitu dan . Kita misalkan ruas garis sebagai vektor dan ruas garis sebagai vektor . Vektor termasuk vektor posisi karena memiliki pangkal di pusat koordinat O(0,0) dan ujung di titik P(4,2). Sama halnya dengan vektor yang juga merupakan vektor posisi karena berpangkal di titik O(0,0) dan ujung di titik R(2,4).
Paham, ya? Oh iya, titik Q pada koordinat kartesius di atas juga bisa menjadi vektor posisi, jika kamu tarik garis lurus dari pusat koordinat ke titik Q tersebut. Nilai vektor posisi akan sama dengan koordinat titik ujungnya. Jadi, vektor posisi dan vektor posisi.
Nah, sekarang coba kamu perhatikan gambar di atas. Pada koordinat kartesius tersebut, terdapat vektor (ke kiri 10 satuan, ke atas 2 satuan). Misalkan, = dan = , sehingga dan merupakan vektor posisi bernilai dan . Jika kita menghitung nilai - , maka akan diperoleh:
Artinya, vektor dapat diperoleh dari vektor posisi titik B dikurangi vektor posisi titik A .
Pembahasan:
1. Diketahui: B(-4,1) dan
Ditanya: Koordinat titik A?
Jawab:
Koordinat titik A akan bernilai sama dengan vektor posisi , jadi koordinat titik A adalah (-2,6).
2. Diketahui: P(2,-1), Q(5,3), dan = PQ.
Ditanya: Koordinat titik R?
Jawab:
Ingat, vektor posisi akan sama nilainya dengan koordinat titik P dan vektor posisi akan sama nilainya dengan koordinat titik Q, sehingga:
Koordinat titik R akan sama nilainya dengan vektor posisi , jadi R(3,4).
Paham ya sampai sini. Selanjutnya, kita akan menentukan panjang vektor pada bidang dua dimensi. Misalkan, merupakan vektor pada ruas garis . Vektor dapat dinyatakan dengan . Pada gambar di bawah, OPR membentuk segitiga siku-siku dengan sisi alas x, sisi tegak y, dan sisi miring . Oleh karena itu, panjang vektor (dinotasikan dengan ||) dapat dicari menggunakan teorema Pythagoras, yaitu:
Contoh:
Diketahui vektor dan . Tentukan || dan || !
Pembahasan:
a. || = satuan panjang.
b. | | = satuan panjang.
Sejauh ini aman, ya… Kalau gitu, kita lanjut ke pembahasan berikutnya, yaitu vektor dalam ruang (dimensi tiga).
Agar kamu bisa lebih memahami konsep vektor dalam ruang, coba perhatikan sistem koordinat kartesius dalam dimensi tiga berikut ini.
Vektor dalam ruang atau vektor tiga dimensi merupakan vektor yang memiliki tiga buah sumbu, yaitu x, y, dan z. Ketiga sumbu tersebut saling tegak lurus dan berpotongan di satu titik yang akan menjadi titik pangkal vektor tersebut. Penulisan vektor tiga dimensi dalam bentuk matriks sebenarnya tidak jauh berbeda dengan vektor dua dimensi. Hanya saja, pada vektor tiga dimensi, terdapat tambahan satu komponen, yaitu komponen z.
Misalnya pada gambar di atas, vektor terdiri dari tiga titik koordinat, yaitu x = 3, y = 4, dan z = 1, sehingga:
Panjang vektor dalam ruang juga dapat ditentukan dengan cara yang sama, yaitu:
Contoh:
Diketahui vektor , tentukan || !
Pembahasan:
|| = satuan panjang.
Cara Menghitung Panjang Vektor
Panjang suatu vektor tergantung dari komponen penyusun vektor. Komponen yang dimaksud di sini mewakili letak vektor berada. Rumus mencari panjang vektor di dimensi dua, tentu akan berbeda dengan cara mencari vektor di dimensi tiga. Meskipun demikian, rumusnya tidak terlalu berbeda sehingga mudah diingat. Berikut ini adalah rumus yang dapat digunakan untuk mencari panjang vektor sampai dengan vektor yang berada di dimensi tiga.
Contoh Soal
Soal No. 1
Perhatikan gambar berikut, PQ adalah sebuah vektor dengan titik pangkal P dan titik ujung Q
a) Nyatakan PQ dalam bentuk vektor kolom
b) Nyatakan PQ dalam bentuk i, j (vektor satuan)
c) Tentukan modulus atau panjang vektor PQ
Pembahasan
Titik P berada pada koordinat (3, 1)
Titik Q berada pada koordinat (7,4)
a) PQ dalam bentuk vektor kolom
b) PQ dalam bentuk i, j (vektor satuan)
PQ = 4i + 3j
c) Modulus vektor PQ
Soal No. 2
Perhatikan gambar kubus dengan sisi sepanjang 10 satuan berikut:
Titik S tepat berada pada perpotongan kedua diagonal sisi alas kubus. Tentukan:
a) Koordinat titik S
b) Koordinat titik V
c) Vektor SV dalam bentuk kolom
d) SV dalam bentuk vektor satuan
e) Modulus atau panjang SV
Pembahasan
a) Koordinat titik S
x = 5
y = 0
z = 5
(5, 0, 5)
b) Koordinat titik V
x = 10
y = 10
z = 0
(10, 10, 0)
c) Vektor SV dalam bentuk kolom
d) SV dalam bentuk vektor satuan
SV = 5i + 10j − k
e) Modulus atau panjang SV
Soal No. 3
Diberikan dua buah vektor masing-masing a = 9 dan b = 4. Nilai cosinus sudut antara kedua vektor adalah 1/3 . Tentukan:
a) |a + b|
b) |a – b|
Pembahasan
a) |a + b|
Jumlah dua buah vektor
b) |a – b|
Selisih dua buah vektor
Soal No. 4
Dua buah vektor masing-masing:
p = 3i + 2j + k
q = 2i – 4 j + 5k
Tentukan nilai cosinus sudut antara kedua vektor tersebut!
Pembahasan
Jumlahkan dua buah vektor dalam i, j, k
Dengan rumus penjumlahan
Soal No. 5
Diketahui vektor a = 2i – 6j – 3k dan b = 4i + 2j – 4k . Panjang proyeksi vektor a pada b adalah…..
A. 4/3
B. 8/9
C. ¾
D. 3/8
E. 8/36
(Soal Ebtanas Tahun 2000)
Pembahasan
Panjang masing-masing vektor, jika nanti diperlukan datanya:
Proyeksi vektor a pada vektor b, namakan c:
Soal No. 6
Diketahui vektor a = 4i − 2j + 2k dan vektor b = 2 i − 6 j + 4k. Proyeksi orthogonal vektor a pada vektor b adalah….
A. i − j + k
B. i − 3j + 2k
C. i − 4j + 4k
D. 2i − j + k
E. 6i − 8j + 6k
(Dari Soal UN Matematika Tahun 2011 Paket 12)
Pembahasan
Proyeksi vektor a pada vektor b namakan c, hasil akhirnya dalam bentuk vektor (proyeksi vektor ortogonal).
Soal No. 7
Besar sudut antara vektor a = 2i − j + 3k dan b = i + 3j − 2k adalah….
A. 1/8 π
B. 1/4 π
C. 1/3 π
D. 1/2 π
E. 2/3 π
(Soal Ebtanas 1988)
Pembahasan
Sudut antara dua buah vektor:
Soal No. 8
Ditentukan A(4 , 7 , 0) , B(6 , 10 , –6) dan C(1 , 9 , 0). AB dan AC wakil-wakil dari vektor u dan v. Besar sudut antara u dan v adalah….
A. 0
B. 1/4 π
C. 1/2 π
D. 3/4 π
E. π
(Soal Ebtanas 1989 – Vektor)
Pembahasan
Tentukan vektor u dan v terlebih dulu:
u = AB = B − A = (6 , 10 , –6) − (4 , 7 , 0) = (2, 3, −6) → u = 2i + 3j − 6k
v = AC = C − A = (1 , 9 , 0) − (4 , 7 , 0) = (− 3, 2, 0) → v = − 3i + 2j
Sudut dengan nilai cosinus nol adalah 90° atau 1/2 π
Soal No. 9
Diketahui | Proyeksi skalar 2u + 3v pada v adalah…. |
A. 1/2
B. 1/2 √2
C. 1/14√14
D. 2√14
E. 7/2√14
Pembahasan
2u + 3v misalkan dinamakan r
Proyeksi vektor r pada v misal namanya s adalah
Soal No. 10
Diberikan tiga buah vektor masing-masing:
a = 6p i + 2p j − 8 k
b = −4 i + 8j + 10 k
c = − 2 i + 3 j − 5 k
Jika vektor a tegak lurus b, maka vektor a − c adalah…..
A. − 58 i − 20 j − 3k
B. − 58 i − 23 j − 3k
C. − 62 i − 17 j − 3k
D. − 62 i − 20 j − 3k
E. − 62 i − 23 j − 3k
Pembahasan
Tentukan nilai p terlebih dahulu, dua vektor yang tegak lurus maka perkalian titiknya sama dengan nol. a dan b tegak lurus maka berlaku:
a ⋅ b = 0
(6p i + 2p j − 8 k)⋅ (−4 i + 8j + 10 k) = 0
− 24p + 16p − 80 = 0
− 8p = 80
p = − 10
Dengan demikian vektor a adalah
a = 6p i + 2p j − 8 k
a = 6(− 10) i + 2(− 10) j − 8 k
a = −60 i − 20 j − 8 k
a − c = ( −60 i − 20 j − 8 k) − (− 2 i + 3 j − 5 k)
a − c = − 58 i − 23 j − 3k
Daftar Pustaka:
Matematika Kelas 10 | Mempelajari Konsep Dasar Vektor
Contoh Soal dan Jawaban Vektor Terbaru dan Lengkap
Naila Zia Khalishah
X MIPA 2 // 28
Komentar
Posting Komentar