Soal Pertidaksamaan Eksponen dan Sifat-Sifatnya
Soal - Soal Pertidaksamaan Eksponen dan Sifat-Sifatnya
Soal 1
Himpunan penyelesaian dari pertidaksamaan eksponen
adalah ...
A. {x / -2 ≤ x ≤ 10/3}
B. {x / -10/3 ≤ x ≤ 2}
C. {x / x ≤ -10/3 atau x ≥ 2}
D. {x / x ≤ -2 atau x ≥ 10/3}
E. {x / -10/3 ≤ x ≤ -2}
Pembahasan :
Pembuat nol :
3x2 + 4x - 20 = 0
(3x + 10)(x - 2) = 0
x = -10/3 atau x = 2
Dengan uji garis bilangan diperoleh
x ≤ -10/3 atau x ≥ 2
Jawaban : C
Soal 2
Penyelesaian dari 5-2x+2 + 74 . 5-x - 3 ≥ 0 adalah ...
A. x ≤ -3 atau x ≥ 1/25
B. -3 ≤ x ≤ 1/25
C. x ≤ 2
D. x ≥ 2
E. x ≥ -2
Pembahasan :
5-2x+2 + 74 . 5-x - 3 ≥ 0
5-2x . 52 + 74 . 5-x - 3 ≥ 0
25(5-x)2 + 74(5-x) - 3 ≥ 0
Misalkan y = 5-x, pertidaksamaan diatas menjadi
25y2 + 74y - 3 ≥ 0
Pembuat nol :
25y2 + 74y - 3 = 0
(y + 3)(25y - 1) = 0
y = -3 atau y = 1/25
Dengan uji garis bilangan diperoleh :
y ≤ -3 atau y ≥ 1/25
Karena y = 5-x, maka
5-x ≤ -3 ⟶ tidak mempunyai penyelesaian
5-x ≥ 1/25 ⇔ 5-x ≥ 5-2 ⇔ -x ≥ -2 ⇔ x ≤ 2
Jadi, penyelesaiannya adalah x ≤ 2
Jawaban : C
A. x ≤ -3 atau x ≥ 1/25
B. -3 ≤ x ≤ 1/25
C. x ≤ 2
D. x ≥ 2
E. x ≥ -2
Pembahasan :
5-2x+2 + 74 . 5-x - 3 ≥ 0
5-2x . 52 + 74 . 5-x - 3 ≥ 0
25(5-x)2 + 74(5-x) - 3 ≥ 0
Misalkan y = 5-x, pertidaksamaan diatas menjadi
25y2 + 74y - 3 ≥ 0
Pembuat nol :
25y2 + 74y - 3 = 0
(y + 3)(25y - 1) = 0
y = -3 atau y = 1/25
Dengan uji garis bilangan diperoleh :
y ≤ -3 atau y ≥ 1/25
Karena y = 5-x, maka
5-x ≤ -3 ⟶ tidak mempunyai penyelesaian
5-x ≥ 1/25 ⇔ 5-x ≥ 5-2 ⇔ -x ≥ -2 ⇔ x ≤ 2
Jadi, penyelesaiannya adalah x ≤ 2
Jawaban : C
Soal 3
Himpunan penyelesaian dari 32x - 6.3x < 27 adalah ...
A. {x / x < -3, x ∈ R}B. {x / x < -2, x ∈ R}
C. {x / x < 2, x ∈ R}
D. {x / x > 2, x ∈ R}
E. {x / x > 3, x ∈ R}
Pembahasan :
32x - 6.3x < 27
(3x)2 - 6(3x) - 27 < 0
Misalkan y = 3x, pertidaksamaan diatas menjadi
Misalkan y = 3x, pertidaksamaan diatas menjadi
y2 - 6y - 27 < 0
Pembuat nol :
y2 - 6y - 27 = 0
(y + 3)(y - 9) = 0
y = -3 atau y = 9
Dengan uji garis bilangan diperoleh
-3 < y < 9
atau dapat pula ditulis
y > -3 dan y < 9
Karena y = 3x, maka
3x > -3 dan 3x < 9
3x > -3 dan 3x < 32
x ∈ R dan x < 2
Jadi, himpunan penyelesaiannya adalah
{x ∈ R dan x < 2} = {x < 2}
Jawaban : C
Pembahasan :
-√7 < p + 2 < √7
-2 -√7 < p < -2 + √7
52x - 6.5x+1 + 125 > 0
(5x)2 - 6.5x.51 + 125 > 0
(5x)2 - 30(5x) + 125 > 0
Misalkan y = 5x, pertidaksamaan diatas menjadi
y2 - 30y + 125 > 0
Pembuat nol :
(y + 3)(y - 9) = 0
y = -3 atau y = 9
Dengan uji garis bilangan diperoleh
-3 < y < 9
atau dapat pula ditulis
y > -3 dan y < 9
Karena y = 3x, maka
3x > -3 dan 3x < 9
3x > -3 dan 3x < 32
x ∈ R dan x < 2
Jadi, himpunan penyelesaiannya adalah
{x ∈ R dan x < 2} = {x < 2}
Jawaban : C
Soal 4
a. {x∣-1<x<2}
b. {x∣-2<x<1}
c. {x∣x<-1 atau x>2}
d. {x∣x<-2 atau x>1}
e. {x∣x<0 atau x>1}
b. {x∣-2<x<1}
c. {x∣x<-1 atau x>2}
d. {x∣x<-2 atau x>1}
e. {x∣x<0 atau x>1}
Pembahasan :
Misal: maka:
(2p – 1) (p – 4) > 0
p = ½ dan p = 4
untuk p = ½, maka
untuk p = 4, maka , x = 2
HP = {x∣x<-1 atau x>2}
Misal: maka:
(2p – 1) (p – 4) > 0
p = ½ dan p = 4
untuk p = ½, maka
untuk p = 4, maka , x = 2
HP = {x∣x<-1 atau x>2}
Jawaban : C
Soal 5
a. {p∣p< -2- √7 atau p> -2+ √7}
b. {p∣p<1 atau p>3}
c. {p∣ -2- √7< p< -2+ √7}
d. {p∣ 1< p< 3}
e. {p∣-3< p< -1}
b. {p∣p<1 atau p>3}
c. {p∣ -2- √7< p< -2+ √7}
d. {p∣ 1< p< 3}
e. {p∣-3< p< -1}
Pembahasan :
-√7 < p + 2 < √7
-2 -√7 < p < -2 + √7
Jawaban : C
Soal 6
Soal 6
Jawaban : B
Soal 7
Nilai x yang memenuhi pertidaksamaan 52x - 6.5x+1 + 125 > 0, x ∈ R adalah ...
A. 1 < x < 2
B. 5 < x < 25
C. x < -1 atau x > 2
D. x < 1 atau x > 2
E. x < 5 atau x > 25
Pembahasan :
A. 1 < x < 2
B. 5 < x < 25
C. x < -1 atau x > 2
D. x < 1 atau x > 2
E. x < 5 atau x > 25
Pembahasan :
52x - 6.5x+1 + 125 > 0
(5x)2 - 6.5x.51 + 125 > 0
(5x)2 - 30(5x) + 125 > 0
Misalkan y = 5x, pertidaksamaan diatas menjadi
y2 - 30y + 125 > 0
Pembuat nol :
y2 - 30y + 125 = 0
(y - 5)(y - 25) = 0
y = 5 atau y = 25
Dengan uji garis bilangan diperoleh
y < 5 atau y > 25
Karena y = 5x, maka penyelesaiannya menjadi
5x < 5 atau 5x > 25
5x < 51 atau 5x > 52
x < 1 atau x > 2
(y - 5)(y - 25) = 0
y = 5 atau y = 25
Dengan uji garis bilangan diperoleh
y < 5 atau y > 25
Karena y = 5x, maka penyelesaiannya menjadi
5x < 5 atau 5x > 25
5x < 51 atau 5x > 52
x < 1 atau x > 2
Jawaban : D
Soal 8
Himpunan penyelesaian dari 22x − 7 ∙ 2x > 8 adalah...
A. {x│x < −1, x ∈ R}
B. {x│x < −2, x ∈ R}
C. {x│x > 3, x ∈ R}
B. {x│x < −2, x ∈ R}
C. {x│x > 3, x ∈ R}
D. {x│x > 4, x ∈ R}
E. {x│x > 8, x ∈ R}
22x − 7 ∙ 2x > 8
p2 − 7p − 8 > 0
(p + 1)(p − 8) > 0
Karena tanda pertidaksamaannya ‘>’ maka penyelesaiannya berada di sebelah kiri −1 atau di sebelah kanan 8.
p < −1 atau p > 8
2x < −1 atau 2x > 8
Penyelesaian 2x < −1 tidak memenuhi karena hasil perpangkatan tidak mungkin negatif. Sehingga kita tinggal menyelesaikan 2x > 8.
2x > 8
2x > 23
x > 3
Jawaban : C
E. {x│x > 8, x ∈ R}
Pembahasan :
Misalkan p = 2x sehingga 22x = p2.22x − 7 ∙ 2x > 8
p2 − 7p − 8 > 0
(p + 1)(p − 8) > 0
Karena tanda pertidaksamaannya ‘>’ maka penyelesaiannya berada di sebelah kiri −1 atau di sebelah kanan 8.
p < −1 atau p > 8
2x < −1 atau 2x > 8
Penyelesaian 2x < −1 tidak memenuhi karena hasil perpangkatan tidak mungkin negatif. Sehingga kita tinggal menyelesaikan 2x > 8.
2x > 8
2x > 23
x > 3
Jawaban : C
Soal 9
Nilai x yang memenuhi pertidaksamaan 32x+1 + 9 − 28 ∙ 3x > 0, x ∈ R adalah ….
A. x > −1 atau x > 2
B. x < −1 atau x < 2
C. x < 1 atau x > 2
D. x < −1 atau x > 2
E. x > −1 atau x < −2
A. x > −1 atau x > 2
B. x < −1 atau x < 2
C. x < 1 atau x > 2
D. x < −1 atau x > 2
E. x > −1 atau x < −2
Pembahasan :
Langkah pertama, kita pecah bilangan berpangkat 32x+1 menjadi 32x ∙ 31.
32x+1 + 9 − 28 ∙ 3x > 0
32x ∙ 31 + 9 − 28 ∙ 3x > 0
Misalkan p = 3x kemudian kita urutkan sehingga menjadi:
3p2 − 28p + 9 > 0
(3p − 1)(p − 9) > 0
Karena tanda pertidaksamaannya ‘>’ maka penyelesaiannya berada di sebelah kiri 1/3 atau di sebelah kanan 9.
p < 1/3 atau p > 9
3x < 3−1 atau 3x > 32
x < −1 atau x > 2
Jawaban : D
32x+1 + 9 − 28 ∙ 3x > 0
32x ∙ 31 + 9 − 28 ∙ 3x > 0
Misalkan p = 3x kemudian kita urutkan sehingga menjadi:
3p2 − 28p + 9 > 0
(3p − 1)(p − 9) > 0
Karena tanda pertidaksamaannya ‘>’ maka penyelesaiannya berada di sebelah kiri 1/3 atau di sebelah kanan 9.
p < 1/3 atau p > 9
3x < 3−1 atau 3x > 32
x < −1 atau x > 2
Jawaban : D
Soal 10
Himpunan penyelesaian dari 9x − 54 >
3x+1 adalah ….
A. {x│x > 9, x ∈ R}
B. {x│x < −3, x ∈ R}
A. {x│x > 9, x ∈ R}
B. {x│x < −3, x ∈ R}
C. {x│x > 4, x ∈ R}
D. {x│x < −6, x ∈ R}
E. {x│x > 2, x ∈ R}
9x − 3x+1 − 54 > 0
Selanjutnya pangkat dari 3 kita pecah dengan rumus am+n = am ∙ an.
9x − 3x . 31 − 54 > 0
Misalkan p = 3x sehingga 9x = p2.
p2 − 3p − 54 > 0
(p + 6)(p − 9) > 0
Karena tanda pertidaksamaannya ‘>’ maka penyelesaiannya berada di sebelah kiri −6 atau di sebelah kanan 9.
p < −6 atau p > 9
3x < −6 atau 3x > 9
Penyelesaian 3x < −6 tidak memenuhi karena hasil perpangkatan tidak mungkin negatif. Sekarang kita lanjutkan untuk 3x > 9.
3x > 9
3x > 32
x > 2
Jawaban : E
E. {x│x > 2, x ∈ R}
Pembahasan :
Langkah pertama kita pindah ruas sehingga ruas kanan menjadi nol9x − 3x+1 − 54 > 0
Selanjutnya pangkat dari 3 kita pecah dengan rumus am+n = am ∙ an.
9x − 3x . 31 − 54 > 0
Misalkan p = 3x sehingga 9x = p2.
p2 − 3p − 54 > 0
(p + 6)(p − 9) > 0
Karena tanda pertidaksamaannya ‘>’ maka penyelesaiannya berada di sebelah kiri −6 atau di sebelah kanan 9.
p < −6 atau p > 9
3x < −6 atau 3x > 9
Penyelesaian 3x < −6 tidak memenuhi karena hasil perpangkatan tidak mungkin negatif. Sekarang kita lanjutkan untuk 3x > 9.
3x > 9
3x > 32
x > 2
Jawaban : E
NAILA ZIA KHALISHAH
X MIPA 2
NO. ABSEN 27
Komentar
Posting Komentar