Soal Pertidaksamaan Eksponen dan Sifat-Sifatnya

Soal - Soal Pertidaksamaan Eksponen dan Sifat-Sifatnya 

Soal 1 

Himpunan penyelesaian dari pertidaksamaan eksponen

92x4(127)x24 adalah ...
A.   {x / -2 ≤ x ≤ 10/3}
B.   {x / -10/3 ≤ x ≤ 2}
C.   {x / x ≤ -10/3  atau  x ≥ 2}
D.   {x / x ≤ -2  atau  x ≥ 10/3}
E.   {x / -10/3 ≤ x ≤ -2}

Pembahasan :
92x4(127)x24(32)2x4(33)x2432(2x4)33(x24)2(2x4)3(x24)4x83x2+123x2+4x200

Pembuat nol :
3x2 + 4x - 20 = 0
(3x + 10)(x - 2) = 0
x = -10/3  atau  x = 2

Dengan uji garis bilangan diperoleh
x ≤ -10/3  atau  x ≥ 2

Jawaban : C  
 
Soal 2 

Penyelesaian dari 5-2x+2 + 74 . 5-x - 3 ≥ 0 adalah ...
A.   x ≤ -3  atau  x ≥ 1/25
B.   -3 ≤ x ≤ 1/25
C.   x ≤ 2
D.   x ≥ 2
E.   x ≥ -2

Pembahasan :
5-2x+2  +  74 . 5-x  -  3 ≥ 0
5-2x . 52  +  74 . 5-x  -  3 ≥ 0
25(5-x)2  +  74(5-x)  -  3  ≥  0

Misalkan y = 5-x, pertidaksamaan diatas menjadi
25y2 + 74y - 3 ≥ 0

Pembuat nol :
25y2 + 74y - 3 = 0
(y + 3)(25y - 1) = 0
y = -3  atau  y = 1/25

Dengan uji garis bilangan diperoleh :
y ≤ -3  atau y ≥ 1/25

Karena y = 5-x, maka
5-x ≤ -3  ⟶  tidak mempunyai penyelesaian
5-x ≥ 1/25  ⇔  5-x ≥ 5-2  ⇔  -x  ≥ -2  ⇔  x ≤ 2

Jadi, penyelesaiannya adalah x ≤ 2

Jawaban : C 
 
Soal 3 
 
Himpunan penyelesaian dari 32x - 6.3x < 27 adalah ...
A.   {x / x < -3, x ∈ R}
B.   {x / x < -2, x ∈ R}
C.   {x / x < 2, x ∈ R}
D.   {x / x > 2, x ∈ R}
E.   {x / x > 3, x ∈ R}

Pembahasan : 

32x  -  6.3x  <  27
 
(3x)2  -  6(3x)  -  27  <  0

Misalkan y = 3x, pertidaksamaan diatas menjadi
   
y2 - 6y - 27 < 0

Pembuat nol :
 
y2 - 6y - 27 = 0
(y + 3)(y - 9) = 0
y = -3  atau y = 9

Dengan uji garis bilangan diperoleh
-3 < y < 9

atau dapat pula ditulis
y > -3  dan  y < 9

Karena y = 3x, maka
3x > -3  dan  3x < 9
3x > -3  dan  3x < 32
x ∈ R    dan  x < 2

Jadi, himpunan penyelesaiannya adalah
{x ∈ R  dan  x < 2} = {x < 2}

Jawaban : C 
 
Soal 4 
 
Himpunan penyelesaian  , x ∊ R adalah ...
a.    {x∣-1<x<2}
b.    {x∣-2<x<1}
c.    {x∣x<-1 atau x>2}
d.    {x∣x<-2 atau x>1}
e.    {x∣x<0 atau x>1}
 
Pembahasan :


Misal:  maka:

     (2p – 1) (p – 4) > 0
     p = ½ dan p = 4
untuk p = ½, maka 
untuk p = 4, maka , x = 2

HP = {x∣x<-1 atau x>2}
 
Jawaban : C 
 
Soal 5 
 
Himpunan penyelesaian pertidaksamaan  adalah ...
a.    {p∣p< -2- √7  atau p> -2+ √7}
b.    {p∣p<1 atau p>3}
c.    {p∣ -2- √7< p< -2+ √7}
d.    {p∣ 1< p< 3}
e.    {p∣-3< p< -1} 

Pembahasan :



      -√7 < p + 2 < √7
     -2 -√7 < p < -2 +  √7
 
Jawaban : C

Soal 6 
 
Nilai x yang memenuhi pertidaksamaan  adalah ...
a.    x ≥ -3/2
b.    x ≥ -1
c.    x ≥ 0
d.    x ≥ 1/2
e.    x ≥ 1
 
Pembahasan : 


     2x + 2 ≥ -2x – 2
     4x ≥ -4
     x ≥ -1
  
Jawaban : B
 
Soal 7 
 
Nilai x yang memenuhi pertidaksamaan 52x - 6.5x+1 + 125 > 0, x ∈ R adalah ...
A.   1 < x < 2
B.   5 < x < 25
C.   x < -1  atau  x > 2
D.   x < 1  atau  x > 2
E.   x < 5  atau  x > 25

Pembahasan : 

52x  -  6.5x+1  +  125  >  0
(5x)2  -  6.5x.51  +  125  >  0
(5x)2  -  30(5x)  +  125  >  0

Misalkan y = 5x, pertidaksamaan diatas menjadi
y2 - 30y + 125 > 0

Pembuat nol :
 
y2 - 30y + 125 = 0
(y - 5)(y - 25) = 0
y = 5  atau  y = 25

Dengan uji garis bilangan diperoleh
y < 5  atau  y > 25

Karena y = 5x, maka penyelesaiannya menjadi
5x < 5  atau  5x > 25
5x < 51  atau  5x > 52
x < 1  atau  x > 2
 
Jawaban : D
  
Soal 8 

Himpunan penyelesaian dari 22x − 7 ∙ 2x > 8 adalah...
A.   {xx < −1, x ∈ R}
B.   {xx < −2, x ∈ R}
C.   {xx > 3, x ∈ R} 
D.   {xx > 4, x ∈ R}
E.   {xx > 8, x ∈ R}

Pembahasan :

Misalkan p = 2x sehingga 22x = p2.

   22x − 7 ∙ 2x > 8
   p2 − 7p − 8 > 0
(p + 1)(p − 8) > 0

Karena tanda pertidaksamaannya ‘>’ maka penyelesaiannya berada di sebelah kiri −1 atau di sebelah kanan 8.

 p < −1    atau    p > 8
2x < −1    atau   2x > 8

Penyelesaian 2x < −1 tidak memenuhi karena hasil perpangkatan tidak mungkin negatif. Sehingga kita tinggal menyelesaikan 2x > 8.

2x > 8
2x > 23
  x > 3

Jawaban : C 

Soal 9 
 
Nilai x yang memenuhi pertidaksamaan 32x+1 + 9 − 28 ∙ 3x > 0, x ∈ R adalah ….
A.   x > −1 atau x > 2
B.   x < −1 atau x < 2
C.   x < 1 atau x > 2
D.   x < −1 atau x > 2
E.   x > −1 atau x < −2  
 
Pembahasan :
Langkah pertama, kita pecah bilangan berpangkat 32x+1 menjadi 32x ∙ 31.

   32x+1 + 9 − 28 ∙ 3x > 0
32x ∙ 31 + 9 − 28 ∙ 3x > 0

Misalkan p = 3x kemudian kita urutkan sehingga menjadi:

 3p2 − 28p + 9 > 0
(3p − 1)(p − 9) > 0

Karena tanda pertidaksamaannya ‘>’ maka penyelesaiannya berada di sebelah kiri 1/3 atau di sebelah kanan 9.

 p < 1/3    atau    p > 9
3x < 3−1   atau   3x > 32
  x < −1    atau     x > 2

Jawaban : D
 
Soal 10 

Himpunan penyelesaian dari 9x − 54 >  

3x+1 adalah ….
A.   {xx > 9, x ∈ R}
B.   {xx < −3, x ∈ R} 
C.   {xx > 4, x ∈ R}  
D.   {xx < −6, x ∈ R}
E.   {xx > 2, x ∈ R}

Pembahasan :

Langkah pertama kita pindah ruas sehingga ruas kanan menjadi nol

9x − 3x+1 − 54 > 0

Selanjutnya pangkat dari 3 kita pecah dengan rumus am+n = am ∙ an.

9x − 3x . 31 − 54 > 0

Misalkan p = 3x sehingga 9x = p2.

 p2 − 3p − 54 > 0
(p + 6)(p − 9) > 0

Karena tanda pertidaksamaannya ‘>’ maka penyelesaiannya berada di sebelah kiri −6 atau di sebelah kanan 9.

 p < −6   atau    p > 9
3x < −6   atau   3x > 9

Penyelesaian 3x < −6 tidak memenuhi karena hasil perpangkatan tidak mungkin negatif. Sekarang kita lanjutkan untuk 3x > 9.

3x > 9
3x > 32
  x > 2

Jawaban : E 

NAILA ZIA KHALISHAH 
X MIPA 2 
NO. ABSEN 27 

Komentar

Postingan populer dari blog ini

Operasi Vektor dan Contoh Soalnya

Sudut Antar Vektor pada Bidang Berdimensi Dua dan Berdimensi Tiga serta Contoh Soalnya

Pembahasan Soal Vektor Matematika Minat X MIPA