Sudut Antar Vektor pada Bidang Berdimensi Dua dan Berdimensi Tiga serta Contoh Soalnya
Dimensi Tiga:
1. Sudut Antara Dua Garis pada Dimensi Tiga
Langkah-langkah Menentukan Sudut Antara Dua Garis pada Dimensi Tiga :
1). Jika kedua garis belum berpotongan, maka geser sehingga berpotongan.
2). Hubungakan kedua ujung garis sehingga terbentuk segitiga.
3). Ada dua kemungkinan besar sudutnya, yaitu :
(i). Besar sudut langsung bisa ditebak
a). Segitiga sama sisi, besar sudutnya 60°
b). Sudut siku-siku, besar sudutnya 90°
c). Segitiga siku-siku sama kaki, besar sudutnya 45°
(ii). Sudut tidak bisa langsung ditebak, ada dua cara yaitu :
*). Baik diketahui atau tidak panjang rusuk pada kubus, untuk memudahkan sebaiknya kita pilih panjang rusuk yang mudah bagi kita dalam melakukan perhitungan, misalkan kita pilih panjang rusuknya 2, atau 4, atau 6, dan lainnya.
*). Kedua garis boleh diperpanjang atau diperpendek yang bertujuan untuk memudahkan dalam perhitungan karena sudutnya akan tetap besarnya.
Langkah-langkah Menentukan Sudut Antara Garis dan Bidang pada Dimensi Tiga :
1). Jika garis g dan bidang V belum berpotongan, maka geser sehingga berpotongan.
2). Lukis garis h yang merupakan hasil proyeksi garis g pada bidang V.
3). Sudutnya : sudut (g, V) = sudut (g, h)
Cara lain untuk menentukan garis h :
a). Buat bidang W melalui garis g dan tegak lurus bidang V.
b). Garis h adalah perpotongan bidang V dan bidang W.
Catatan :
*). Langkah berikutnya adalah mencari sudut antara dua garis yang sudah kita pelajari pada materi sebelumnya yaitu "sudut antara dua garis pada dimensi tiga".
Langkah-langkah menentukan Sudut Antara Dua Bidang pada Dimensi Tiga :
1). Jika bidang V dan bidang W belum berpotongan, maka geser sehingga berpotongan.
2). Lukis garis l yang merupakan perpotongan antara bidang V dan bidang W.
3). Lukis garis g pada bidang V dan garis h pada bidang W, dimana kedua garis ini tegak lurus dengan garis l
4). Sudutnya : sudut (V, W) = sudut (g,h).
Catatan :
*). Langkah berikutnya adalah mencari sudut antara dua garis yang sudah kita pelajari pada materi sebelumnya yaitu "sudut antara dua garis pada dimensi tiga".
*). garis g dan h harus berpotongan (harus bertemu agar terbentuk sudutnya).
Dimensi Dua:
Vektor di R^2
Panjang segmen garis yang menyatakan vektor atau dinotasikan sebagai Panjang vektor sebagai:
Panjang vektor tersebut dapat dikaitkan dengan sudut yang dibentuk oleh vektor dan sumbu x. positif.
Vektor dapat disajikan sebagai kombinasi linier dari vektor basis dan berikut:
Contoh Soal :
Soal No. 1
Perhatikan gambar berikut, PQ adalah sebuah vektor dengan titik pangkal P dan titik ujung Q
a) Nyatakan PQ dalam bentuk vektor kolom
b) Nyatakan PQ dalam bentuk i, j (vektor satuan)
c) Tentukan modulus atau panjang vektor PQ
Pembahasan
Titik P berada pada koordinat (3, 1)
Titik Q berada pada koordinat (7,4)
a) PQ dalam bentuk vektor kolom
b) PQ dalam bentuk i, j (vektor satuan)
PQ = 4i + 3j
c) Modulus vektor PQ
Soal No. 2
Perhatikan gambar kubus dengan sisi sepanjang 10 satuan berikut:
Titik S tepat berada pada perpotongan kedua diagonal sisi alas kubus. Tentukan:
a) Koordinat titik S
b) Koordinat titik V
c) Vektor SV dalam bentuk kolom
d) SV dalam bentuk vektor satuan
e) Modulus atau panjang SV
Pembahasan
a) Koordinat titik S
x = 5
y = 0
z = 5
(5, 0, 5)
b) Koordinat titik V
x = 10
y = 10
z = 0
(10, 10, 0)
c) Vektor SV dalam bentuk kolom
d) SV dalam bentuk vektor satuan
SV = 5i + 10j − k
e) Modulus atau panjang SV
Soal No. 3
Diberikan dua buah vektor masing-masing a = 9 dan b = 4. Nilai cosinus sudut antara kedua vektor adalah 1/3 . Tentukan:
a) |a + b|
b) |a – b|
Pembahasan
a) |a + b|
Jumlah dua buah vektor
b) |a – b|
Selisih dua buah vektor
Soal No. 4
Dua buah vektor masing-masing:
p = 3i + 2j + k
q = 2i – 4 j + 5k
Tentukan nilai cosinus sudut antara kedua vektor tersebut!
Pembahasan
Jumlahkan dua buah vektor dalam i, j, k
Dengan rumus penjumlahan
Soal No. 5
Diketahui vektor a = 2i – 6j – 3k dan b = 4i + 2j – 4k . Panjang proyeksi vektor a pada b adalah…..
A. 4/3
B. 8/9
C. ¾
D. 3/8
E. 8/36
(Soal Ebtanas Tahun 2000)
Pembahasan
Panjang masing-masing vektor, jika nanti diperlukan datanya:
Proyeksi vektor a pada vektor b, namakan c:
Soal No. 6
Diketahui vektor a = 4i − 2j + 2k dan vektor b = 2 i − 6 j + 4k. Proyeksi orthogonal vektor a pada vektor b adalah….
A. i − j + k
B. i − 3j + 2k
C. i − 4j + 4k
D. 2i − j + k
E. 6i − 8j + 6k
(Dari Soal UN Matematika Tahun 2011 Paket 12)
Pembahasan
Proyeksi vektor a pada vektor b namakan c, hasil akhirnya dalam bentuk vektor (proyeksi vektor ortogonal).
Soal No. 7
Besar sudut antara vektor a = 2i − j + 3k dan b = i + 3j − 2k adalah….
A. 1/8 π
B. 1/4 π
C. 1/3 π
D. 1/2 π
E. 2/3 π
(Soal Ebtanas 1988)
Pembahasan
Sudut antara dua buah vektor:
Soal No. 8
Ditentukan A(4 , 7 , 0) , B(6 , 10 , –6) dan C(1 , 9 , 0). AB dan AC wakil-wakil dari vektor u dan v. Besar sudut antara u dan v adalah….
A. 0
B. 1/4 π
C. 1/2 π
D. 3/4 π
E. π
(Soal Ebtanas 1989 – Vektor)
Pembahasan
Tentukan vektor u dan v terlebih dulu:
u = AB = B − A = (6 , 10 , –6) − (4 , 7 , 0) = (2, 3, −6) → u = 2i + 3j − 6k
v = AC = C − A = (1 , 9 , 0) − (4 , 7 , 0) = (− 3, 2, 0) → v = − 3i + 2j
Sudut dengan nilai cosinus nol adalah 90° atau 1/2 π
Soal No. 9
Diketahui | Proyeksi skalar 2u + 3v pada v adalah…. |
A. 1/2
B. 1/2 √2
C. 1/14√14
D. 2√14
E. 7/2√14
Pembahasan
2u + 3v misalkan dinamakan r
Proyeksi vektor r pada v misal namanya s adalah
Soal No. 10
Diberikan tiga buah vektor masing-masing:
a = 6p i + 2p j − 8 k
b = −4 i + 8j + 10 k
c = − 2 i + 3 j − 5 k
Jika vektor a tegak lurus b, maka vektor a − c adalah…..
A. − 58 i − 20 j − 3k
B. − 58 i − 23 j − 3k
C. − 62 i − 17 j − 3k
D. − 62 i − 20 j − 3k
E. − 62 i − 23 j − 3k
Pembahasan
Tentukan nilai p terlebih dahulu, dua vektor yang tegak lurus maka perkalian titiknya sama dengan nol. a dan b tegak lurus maka berlaku:
a ⋅ b = 0
(6p i + 2p j − 8 k)⋅ (−4 i + 8j + 10 k) = 0
− 24p + 16p − 80 = 0
− 8p = 80
p = − 10
Dengan demikian vektor a adalah
a = 6p i + 2p j − 8 k
a = 6(− 10) i + 2(− 10) j − 8 k
a = −60 i − 20 j − 8 k
a − c = ( −60 i − 20 j − 8 k) − (− 2 i + 3 j − 5 k)
a − c = − 58 i − 23 j − 3k
Daftar Pustaka :
https://www.konsep-matematika.com/2018/01/sudut-antara-dua-garis-pada-dimensi-tiga.html
https://www.konsep-matematika.com/2018/01/sudut-antara-garis-dan-bidang-pada-dimensi-tiga.html
https://www.konsep-matematika.com/2018/01/sudut-antara-dua-bidang-pada-dimensi-tiga.html
https://www.studiobelajar.com/vektor/
https://contoh123.info/materi-contoh-soal-dan-pembahasan-vektor-sma-kelas-12-tuntas/
X MIPA 2
No. Absen 28
Komentar
Posting Komentar