Operasi Vektor dan Contoh Soalnya
Operasi Vektor
Vektor di R2
Panjang dari suatu segmen garis yang menyebutkan vektor dilambangkan dengan memakai atau dapat juga dinotasikan dengan menggunakan simbol ||
Berikut ini panjang dari vektor yaitu seperti berikut ini:
Panjang vektor sendiri adalah bentuk yang bisa dihubungkan dengan sudut ∅ yang dapat dengan mudah untuk dibentuk oleh vektor serta juga sumbu positif.
Operasi Vektor di R2
⇒ Proses penjumlahan dan juga Pengurangan Vektor di R2
Resultan adalah sebutan dari hasil penjumlahan yang dilakukan pada dua vektor atau pun lebih.
Penjumlahan pada vektor ini sendiri juga dapat dilakukan secara aljabar serta juga dapat dilakukan dengan memakai cara menjumlahkan komponen yang berada di posisi sama atau seletak.
Apabila:
maka :
Maka penjumlahan secara grafis sendiri dapat kita lihat pada contoh gambar yang ada di bawah ini:
Pada pengurangan vektor ini diberlakukan sama dengan yang ada pada penjumlahan, antara lain adalah sebagai berikut, lihat pada contoh di bawah ini:
Sifat -sifat di dalam penjumlahan vektor ini sendiri adalah seperti di bawah ini, silahkan disimak rumusnya:
⇒ Perkalian Vektor di R2 Dengan Skalar
Suatu vektor sendiri juga dapat dikalikan dengan suatu skalar atau bilangan real yangnantinya akan menghasilkan suatu vektor baru jika adalah vektor dan k merupakan skalar.
Sehingga perkalian vektor dapat dinotasikan menjadi seperti di bawah ini:
Berikut ini merupakan beberapa keterangan selengkapnya:
- Apabila k > 0, maka vektor akan searah dengan vektor
- Apabila k < 0, maka vektor akan berlawanan arah dengan vektor
- Apabila k = 0, maka vektor merupakan vektor identitas
Jika secara grafis perkalian ini dapat mengubah panjang vektor serta dapat dilihat pada tabel yang terletak di bawah ini:
Jika secara aljabar, perkalian vektor dengan skalar k dapat kita rumukan dengan memakai rumus seperti yang ada di bawah ini:
⇒ Perkalian Skalar Dua Vektor di R2
Dalam perkalian skalar dua vektor bisa juga disebut sebagai hasil kali titik dua vektor yang dapat kita tuliskan seperti yang ada di bawah ini:
Vektor di R3
Vektor yang terelta di dalam ruang tiga dimensi (x, y, z) di mana jarak antara dua titik vektor dalam R3 bisa kalian ketahui dengan pengembangan rumus phytagoras.
Apabila titik dari A(x2. y2. z2) serta B(x2. y2. z2) adalah:
Atau apabila , sehingga:
Vektor bisa disebutkan dalam dua bentuk, yakni dalam kolom
atau dalam baris menjadi
Vektor juga bisa disajikan sebagai kombinasi linier dari vektor basis seperti atau dan atau
berikut selengkapnya:
Operasi Vektor di R3
Operasi vektor di R3 secara umum, mempunyai konsep yang sama dengan operasi yang ada di vektor R2 dalam penjumlahan, pengurangan, hingga perkalian.
Penjumlahan dan pengurangan vektor di R3
Penjumlahan dan juga pengurangan vektor di R3 sama dengan yang ada di vektor R2 yakni:
Perkalian vektor di R3 dengan skalar
Apabila merupakan vektor dan k merupakan skalar. Maka perkalian vektor menjadi:
Hasil kali skalar dua vektor
Selain rumus pada R3, terdapat rumus lain dalam hasil kali skalar dua vektor. Apabila dan maka adalah:
Operasi Aljabar Vektor
Penjumlahan dan Pengurangan Vektor
Perhatikanlah gambar vektor a, b, dan c pada koordinat Cartesius berikut ini !
Untuk a dan b vektor-vektor pada dua dimensi, berlaku :
Perkalian Skalar dengan Vektor
Jika k skalar tak nol dan vektor u = (u1, u2 , …, un), maka ku = (ku1, ku2, …, kun).
Dalam perkalian skalar dengan vektor ini, jika k > 0, maka vektor ku searah dengan vektor u. Adapun jika k < 0, maka vektor ku berlawanan arah dengan vektor u.
Sifat-sifat Operasi Hitung pada Vektor
Jika a, b, dan c merupakan vektor-vektor, kemudian k dan l skalar tak nol maka berlaku hubungan berikut :
a + b = b + a (a + b) + c = a + (b + c) a + 0 = 0 + a = a a + (–a) = 0 | (kl)a = k(la) k (a+b) = ka + kb (k+l)a = ka + la 1a = a |
Perkalian antara Dua Vektor
Hasil kali titik (dot product)
Hasil kali titik merupakan operasi antara dua buah vektor pada ruang yang sama, yaitu ruang yang menghasilkan skalar. Jika v dan w vektor pada ruang/dimensi yang sama, θ sudut diantara v dan w, maka hasil kali titik antara dua vektor :
Beberapa sifat perkalian titik adalah:
a · b = b · a
a · (b + c ) = (a · b )+ (a · c )
k(a · b ) = ka · b = a · kb, dimana k ∈ R
Hasil Kali Silang (cross product)
Hasil kali silang merupakan operasi antara dua vektor pada ruang tiga dimensi yang menghasilkan vektor yang tegak lurus terhadap kedua vektor yang dikalikan tersebut.
Cara menghitung :
Contoh Soal
1.
3.
7.
Daftar Pustaka :
https://www.yuksinau.id/vektor-matematika/
https://tambahpinter.com/vektor-matematika/#Operasi_Aljabar_Vektor
https://mathcyber1997.com/soal-dan-pembahasan-vektor-tingkat-sma-sederajat/
X MIPA 2
No. Absen 28
Komentar
Posting Komentar