Postingan

Menampilkan postingan dari April, 2021

Pembahasan Soal Vektor Karangan Sendiri

Naila Zia Khalishah X MIPA 2 No. Absen 28   1.  Diketahui dua vektor u = 4i – mj + 2 k dan v = 5i + 2j – 4k saling tegak lurus. Maka nilai m adalah.....  A. 10 B. 6 C. 5 D. 9 E. 1  Pembahasan : Merujuk pada soal tersebut, vektor u dan v saling tegak lurus maka rumusnya sama seperti: u.v = 0. Dengan begitu, untuk mencari harga m, maka rumus tersebutlah yang digunakan dengan memasukkan persamaan yang telah diketahui. Hitungannya menjadi seperti berikut: u . v = 0 (4i – mj + 2k) (5i + 2j – 4k) = 20 – 2m – 8 = 0 m = 6 Dari hasil hitungan tersebut maka pilihan jawaban yang tepat ialah  B . 6   2.  Jika vektor a = 4i − 2j − 6k dan vektor b = -5i + mj − 4k saling tegak lurus, maka nilai m adalah ...... A. 3 D. -2 B. 2 E. -4 C. 1  Pembahasan :  Kedua vektor saling tegak lurus, maka membentuk sudut 90 o . Berdasarkan konsep perkalian skalar : ⇒ a.b = |a|.|b| cos θ ⇒ a.b = |a|.|b| cos 90 o ⇒ (4i − 2j − 6k).(-5i + mj − 4k) = |a|.|b| (0) ⇒ 4(-5) + (-2)(m) + (-6)(-4) = 0 ⇒ -20 − 2m + 24 = 0 ⇒ -2m +

Pembahasan Soal Vektor Matematika Minat X MIPA

Gambar
Nama : Naila Zia Khalishah    Kelas : X MIPA 2  No. Absen  : 28   Link soal : https://lizzanovrida-education.blogspot.com/2021/     28. Vektor u=i-2j-5k, v=-4i+mj-4k, dan w=4i-j+2k. Jika u dan v saling tegak lurus maka hasil dari (u-v).(2w) adalah  (40i - 12j - 4k)  Jawab :  Saling tegak lurus maka,  u.v = 0 (i, - 2j, - 5k) . (- 4i, mj, - 4k) = 0 - 4 - 2m + 20 = 0 2m = 4 - 20   2m = - 16 m = - 8   u - v = (i, - 2j, - 5k) - (- 4i, mj, - 4k)  = (1, -2, -5) - (- 4, - 8, - 4) = (5, 6, -1)     2w    = (2) . (4i, - j, 2k)  = (2) . (4, - 1, 2)  = (8, - 2, 4)   (u-v).(2w) = (5, 6, -1) . (8, - 2, 4) = (40, - 12, - 4)  (40i - 12j - 4k)